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This note contains a formalism for calculating properties of random walks in the 
presence of a set of partially absorbing traps. The properties that are considered 
are the probability of trapping at a specific point and the survival probability as 
a function of step number.  The results are expressed in terms of determinants,  
but approximations to these can be found. 
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1. I N T R O D U C T I O N  

A number of investigators have analyzed the problem of competitive effects 
for a particle diffusing in the presence of several absorbing surfaces. (1 m 
Such models arise naturally when one tries to generalize the Smoluchowski 
theory (~2) of diffusion-controlled reactions and the Onsager model (15) for 
ion recombination. Applications of these results can be made to radiation 
chemistry (~4) and photogeneration. (15) In all of the cited analyses the 
assumption is made that the reaction centers, or trapping sites, are per- 
fectly efficient. In the present note we consider the effects of imperfect trap- 
ping efficiencies on absorption probabilities of random walks on a lattice, 
thereby generalizing the theory of Watanabe ~7) for perfect absorption. 
Sano (~~ has shown that provided that the traps are separated by more 
than approximately five lattice spacings, one can get useful results from a 
continuum approximation, at least in the case of two traps. The results 
presented here are based on the work of Rubin and Weiss (16~ who studied 
statistical properties of the number of visits of a random walker to a given 
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set of points. The results of that work were presented in terms of a multiple 
generating function that will be shown to be exactly the quantity needed 
for the solution of the present problem. 

2. D E V E L O P M E N T  OF THE F O R M A L I S M  

We assume the existence of m traps located at Sl, s2,..., sin, none of 
which are located at r = 0, the initial position of the random walker. The 
possibility that r = 0 is a trap can also be taken into account by the same 
techniques. The probability that a single encounter of the random walker 
with trap i leads to a trapping event will be denoted by ~i- In order to 
calculate the joint probability of trapping, at si at step n we need a set of 
probabilities defined on a trap-free lattice. These will be denoted by 
Pn(r t ll,..., lm) defined to be the probability that the random walker is at r 
at step n having visited sl 11 times, s 2 l 2 times, and so forth. Let Fn,i be the 
joint probability that the random walker is trapped at s~ at step n. This 
quantity can be expressed, in terms of the P , ( r  I l) as 

F,,,,=~, ~ .-. ~ P.(s,  l l ) ( 1 - ~ ) ' ~ ( 1 - ~ 2 ) ' ~ . - . ( 1 - ~ )  '~ (11 
II - -0  l m = O  

so that this joint probability is really a multiple generating function. For- 
mal expressions for such generating functions have been found by Rubin 
and Weiss (~6) and for related generating functions by Montroll  (~7) and den 
Hollander and Kasteleyn. (18) We simply apply these results to the present 
problem. 

The statistical properties of a single step of the random walk are con- 
tained in the single-step transition probabilities, {p(j)} or equivalently in 
the characteristic function 

2(0) = ~ p(j) exp(ij �9 O) (2) 
J 

These will be used to generate the Green's functions required for the 
solution. In order to find the F.,i we need the following generating function 

U(z,x, 0 ) =  ~ z"Zx~l~X~...x~ZP,(r]l)exp(ir.O) (3) 
n = 0  I r 

for x = (1 - ~z, 1 - c~ 2 ..... 1 - ~m). The function U can be expressed in terms 
of generating functions of Green's functions 

exp( - it .  0) dUO 
P ( r ; z ) -  ~ P.(r) z"- (21)nf"; f  i-~J.(-O)- (4) 

n ~ O  
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where N is the number of dimensions. Rubin and Weiss (16) have shown that 

U(z, x, 0)= [1 -  z2(O)] -1 {1 -  E (1-  xj)(D/D)exp(isj. O)] 
J 

where D is the determinant whose 0 element is 

(5) 

(D)o .=xi ,  j +  (1 - x j )  P ( s i - s j ,  z) (6) 

and Dj(z,  x) is obtained from D(z,  x) by replacing its j th  column by the 
vector 

P(s.2, ~) 

P(Sm, z) 

Equation (17b) of reference 16 can be used to show that Fnj  is the coef- 
ficient of z in 

Fj(z )  = c~jDj(z, 1 - ~1, 1 - c~2,... , 1 - c%)/D(z,  1 - ~ z 1 ,  1 - ~ 2  . . . . .  1 - am) (7) 

Furthermore, the probability of being trapped at sj can be expressed 
directly in terms of Fj(z )  as 

F j =  lim F / z )  (8) 
z ~ l - -  

3. SOME EXAMPLES 

The simplest example of this formalism involves a single trap at s, in 
which case 

F ( z )  = aP(s; z)/[- 1 - a + aP(0; z)] (9) 

If we introduce generating functions with respect to n for F,(s), the first 
passage time to s, it is known that (~9) 

F(0; z) = 1 - [P(0; z)] -1 

F(s; z) = P(s; z)/P(0; z), 

so that eq. (9) becomes 

s#O 
(lo) 

F(z) = c~F(s; z)/I- 1 -- (1 -- c~) F(0; z)] (11) 
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which has been derived earlier. (2~ A second example for which results are 
readily obtained relates to the one-dimensional case with two partial traps. 
Let us set sl = - s ,  s2 = t, where s, t > O. It is readily verified that 

D1 = (1 - ~2) P ( - s ;  z) + e2[P(0; z) P( -s ;  z) - P(t; z) P(s + t; z)]  

O = (1 - ~1)(1 - 0~2) + (e 1 + ~2 -- 2~1~2) P(O; z) (12) 

+  2{P2(0; z) - e(s + t; z) P [ -  (s + t); z ]  } 

In particular, when the random walk is symmetric and 

a2=  ~ j2p(j) (13) 
j =  --oo 

is finite, the behavior of P(r, z) as z ~ 1 -  and r 2 >> a 2 is known to be 

P ( r ; z ) ~ e x p [ - ( [ r l / a ) x / ~ - z ) ] / ( a x / 2 ( 1 - z ) )  (14) 

Under these conditions, eq. (7) implies that both D~ and D are singular in 
the same limit so that F1, the probability of trapping at sl, is found in 
terms of the most singular terms in the numerator and denominator of 
Dt/D. After some algebra, one finds that 

} F I ~  1 (2elc%(s + t) + a2(al-~-~2_ 2~a2  ) s, t ~  vo (15) 

Thus, when a 1 =a2  = 1, F 1= t/(s+ t), which is otherwise easy to find. 
When either or both al and a2 are less than 1 F1 has the properties 
l im t_~  F1 = 1, l i m ~  F1 =0 ,  which are both intuitively reasonable. As 
the variance of a single step a 2 increases without limit, F~ becomes 
independent of s and t consistent with the idea that the random walker 
samples an increasingly larger part of space without remaining localized 
near one or the other trap. Finally, if e~ = a 2 = a decreases to zero, then 
F1 ~ 1, again because the random walker has a large amount of time in 
which to sample parts of the line, thereby allowing it to make many visits 
to both trapping sites. Notice that although we have assumed that the ran- 
dom walker initially lies between the two trapping points, this restriction 
can be dispensed with. An analysis similar to that given earlier shows that 
when the two traps are at t > s > 0 ,  eq. (15) is to be replaced by 

2c~2(t-s)+a2(1 --a2) } 
I~l ~ 1  (2CqC~2(t_S)+a2(Cq q_C~2_2OtlC~2) S, t, t--S~> 1 (16) 

When c~ 2 = a~ = 1, F1 --- 1 so that the random walker never gets beyond the 
closest trap to the origin. This result is obvious for nearest-neighbor walks. 
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When the number of dimensions is 3 or greater, the functions P(r ;  z) 
no longer diverge as z--+ 1 and eventual trapping is no longer a certain 
event. Therefore, one can calculate trapping probabilities, but these no 
longer sum to 1. In this case the relative trapping probabilities defined by 

g2l = o~lDi ~, oqDi (17) 
i = I  

are of interest. 
As an example let us consider the case of two partially absorbing sites 

at s and t for a symmetric three-dimensional random walk. In addition, let 
us suppose that both s and t are far from the origin in the sense that 
s 2, t2>> 1 and that they are far from each other so that t t -s l2>> 1. These 
conditions suffice to allow the use of the asymptotic form for the various 
Green's function generating functions that appear in D(z, x) and Di(z, x). If 
the random walk is such that in a neighborhood of the origin 

2(0) ~ 1 - (02/2)(02 + 02 + 02) (18) 

as, for example, is valid for nearest-neighbor random walks on the simple 
cubic lattice then 

1 1 
�9 - (19) P(r; 1) ~ 27~0.3/2 r 

where r =  ( r - r )  ~/2. Inserting this approximation into eq. (7) and keeping 
lowest-order terms we find 

0 { 1 1 1 -  0~2 q'- 0{2P(0;  1)3 t 
~ 1  - ( 2 0 )  

~1[-1-~2+~2P(0 ;  1)] t + ~ a F l - ~ l  +~IP(0 ;  1)] s 

so that when ~ = ~2 = a, QI = t/(s+ t)just as in one dimension. Higher- 
order terms in this expansion are readily calculated. It is interesting to note 
that details of the random walk contained in P(0; 1) are only important 
when the ~'s are unequal. To the order of approximation shown in eq. (20), 
one can also calculate g21 for an arbitrary collection of trapping sites at 
sl, s2,..., sn, provided that the distances between these sites are large. One 
finds that to lowest order 

(~i/s/) 
Fi ~ (21) 

1 - -  o~ i ~- o~iP(O; 1 ) 

with the relative probabilities being given by 

~Q, = F, ~ Fj (22) 
j 1 

822/44/5-6-15 
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When all of the traps are perfect ones, this equation reduces to 

s ~ (1/si) (1/sj) (23) 
j 1 

Thus far we have mainly focussed on the relative absorption 
probabilities for a set of imperfect traps, but the same formalism can also 
be used to discuss the survival probabilities as a function of n provided that 
we retain the dependence on z. For example, in three dimensions when the 
random walk is unbiassed and a 2 < 

P(r; z) ~ P(r; 1) + a(r)(1 - z) 1/2 + ".. (24) 

as z --* 1 - .  The function a(r) is expressible as a triple integral. 
In the case of trapping by a single imperfect trap 

{ . 1- a(s) 1-~+~P(O;li~a(O) 1 } r(z)~r(1) 1 + L p- i ) ( 1 - z ) m +  ' ' -  (25) 

as z-~ 1. But this implies that 

2r(1)[ a(s! aa(0) I 1 
F " I ~  / z ~  LP(s;1) 1 - ~ + a P ( 0 ; 1 )  n 3/: 

(26) 

It is obvious both from this and the last equation that the value of a has no 
influence on the form of the time dependence of survival, but only on the 
multiplicative constant. This proves to be true as well for any number of 
trapping sites, as can be verified by expanding D(z, x) and D~(z, x) to 
lowest order in (l--z) U2. If one considers the multiple-site trapping 
problem on a finite lattice, then the Green's function generating functions 
in any number of dimensions takes the form of a rational fraction. In con- 
sequence, one can show that in any number of dimensions the probability 
of survival goes down exponentially at sufficently long times. A proof can 
be given along the lines taken by Weiss, Havlin, and Bunde (m for a single 
trap or by den Hollander (22) for multiple traps. The calculation of con- 
stants will, of course, present difficulties of detail. Development of a similar 
theory for so-called non-Markovian traps (23) appears to be much more 
complicated than for the Markovian model developed here. However, 
when the average number of random walk-trap encounters necessary to 
produce a trapping event is finite we may expect that the asymptotic results 
for the survival probability are similar to those found in the present note. 
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